Цифровая подстанция - объект критической инфрастуктуры. Цифровая подстанция Единая цифровая среда

💖 Нравится? Поделись с друзьями ссылкой

ЦИФРОВАЯ

ПОДСТАНЦИЯ

ЦИФРОВАЯ

ПОДСТАНЦИЯ

ИНТЕРАКТИВНОЕ УПРАВЛЕНИЕ СИСТЕМАМИ СОБСТВЕННЫХ НУЖД ПОДСТАНЦИИ ЧЕРЕЗ СЕНСОРНУЮ ПАНЕЛЬ ПРОМЫШЛЕННОГО КОНТРОЛЛЕРА

МИКРОПРОЦЕССОРНЫЕ ТЕРМИНАЛЫ ЗАЩИТЫ И АВТОМАТИКИ, СЧЕТЧИКИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ, ПОДДЕРЖИВАЮЩИЕ ПРОТОКОЛЫ МЭК 61850

ТРАДИЦИОННЫЕ ТРАНСФОРМАТОРЫ ТОКА И ТРАНСФОРМАТОРЫ НАПРЯЖЕНИЯ СОВМЕСТНО С УСТРОЙСТВОМ СОПРЯЖЕНИЯ ШИН

ИЗМЕРЕНИЯ, УПРАВЛЕНИЕ И СИГНАЛИЗАЦИЯ РЕАЛИЗОВАНЫ В SCADA-СИСТЕМЕ С УПРАВЛЕНИЕМ ЧЕРЕЗ ПРОМЫШЛЕННЫЙ КОМПЬЮТЕР С СЕНСОРНОЙ HMIПАНЕЛЬЮ

Что такое цифровая подстанция?

Это подстанция, оснащенная комплексом цифровых устройств, обеспечивающих функционирование систем релейной защиты и автоматики, учета электроэнергии, АСУ ТП, регистрации аварийных событий по протоколу МЭК 61850.

Внедрение МЭК 61850 дает возможность связать всё технологическое оборудование подстанции единой информационной сетью, по которой передаются не только данные от измерительных устройств к терминалам РЗА, но и сигналы управления.

Эксклюзивное решение стало доступным

Стандарт МЭК 61850 очень хорошо известен на подстанциях с классом питающего напряжения 110кВ и выше, мы предлагаем решение по применению данного стандарта в классах 35кВ, 10кВ и 6кВ.

Зачем необходима цифровая подстанция?

Сокращение времени проектирования на 25%

Типизация схемных и функциональных решений. Сокращение числа функциональных цепей, клеммных рядов в релейных отсеках ячеек.

Сокращение объема монтажных и наладочных работ на 50%

Применяется решение высокой заводской готовности. На заводе производится монтаж оборудования КРУ по главным и вспомогательным цепям. Прокладываются межшкафные связи систем оперативного тока, монтируются системы АСУ ТП, АСКУЭ. Осуществляется параметрирование, конфигурирование и тестирование систем РЗиА.

Сокращение затрат на обслуживание на 15%

Переход от проведения планового технического обслуживания по времени к обслуживанию по состоянию оборудования за счет On-line диагностики состояния оборудования. Тем самым снижается количество выездов работников для проведения регламентых работ.

100% оперативных переключений производится дистанционно с видеоконтролем операций

Простая интеграция всех систем в единое цифровое пространство позволяет управлять подстанцией безопасно и оперативно, а также встраивать в систему АСУ ТП других уровней.

Как это работает?

ЦИФРОВАЯ ПОДСТАНЦИЯ МЭК 61850

Заказчику поставляются цифровые комплектные трансформаторные подстанции 100% заводской готовности, включая все основные подстанционные системы: АСУ ТП, АСКУЭ и СН.

КРУ «Классика» обладают современной архитектурой и по своим конструктивным и эксплуатационным параметрам в наивысшей степени отвечают всем современным требованиям. Благодаря широкой сетке схем главных цепей достигается высокая гибкость решений при проектировании и применении КРУ.

Все ячейки КРУ 10 кВ, устанавливаемые в подстанцию, оборудованы электроприводом заземляющего разъединителя и выдвижного кассетного элемента с выключателем.

Модуль SKP – специальный электротехнический контейнер с утеплением, оснащенный системами освещения, обогрева и вентиляции и встроенным в него электрооборудованием.

Данные модули обладают высокой заводской готовностью с малыми сроками монтажа и наладки, что наряду с высокой антикоррозионной стойкостью и возможностью эксплуатации в суровых климатических условиях делает их незаменимыми в построении комплектных трансформаторных подстанций.

Модульное здание не требует обслуживания в течение всего срока службы.

Завод-изготовитель дает гарантию на антикоррозийную защиту и покраску на весь срок службы.

Модульное здание имеет мощность тепловых потерь не более 4 кВт в режиме нормальной эксплуатации (температура снаружи -40 °С, температура внутри +18 °С) и 3 кВт в режиме энергосбережения (температура снаружи -40 °С, температура внутри +5 °С).

Модули SKP выполнены из металла с алюмоцинковым покрытием (Al-55%-Zn-45%), обеспечивающим гарантированную защиту от коррозии на весь срок службы модулей.

Как это работает?

Как это работает?

ЦИФРОВАЯ ПОДСТАНЦИЯ МЭК 61850

Шкафы КРУ оснащены микропроцессорными терминалами защиты и автоматики, а также аналого-цифровыми преобразователями. Преобразования аналоговых сигналов в цифровые не выходят за пределы одного шкафа КРУ.

Для работы защит УРОВ, ЗМН, АВР, ЛЗШ, дуговой защиты, ДЗТ, ОБР необходимо наличие межтерминальной связи. Благодаря применению протокола МЭК 61850 все сигналы между терминалами передаются по одному оптическому кабелю или одному кабелю Еthernet. Таким образом, обмен между шкафами осуществляется только по цифровому каналу, который исключает необходимость в традиционных цепях, соединяющих шкафы.

Использование оптического кабеля или кабеля Еthernet вместо обычных сигнальных кабелей снижает длительность и стоимость простоя подстанций в процессе реконструкции вторичного оборудования и создает возможность для легкой и быстрой переконфигурации системы РЗиА.

Большая часть дискретных сигналов, передаваемых между устройствами РЗиА, прямо влияет на скорость ликвидации аварийного режима, поэтому передача сигнала осуществляется при помощи прокола МЭК 61850-8.2. (GOOSE), который отличается высоким быстродействием.

Время передачи одного пакета данных GOOSE

сообщения не превышает 0,001 секунды.

Было Стало

Передача измерений и дискретных сигналов от устройств РЗиА в систему АСУ ТП проивзодится по протоколу MMS (с использованием сервисов буферизированных и небуферизированных отчетов). При работе систем телесигнализации и телеизмерения происходит передача большого объема данных. Для снижения нагрузки на информационную сеть используется протокол MMS, который характеризуется компактностью передаваемой информации.

Как это работает?

Протокол передачи данных МЭК 61850 обеспечивает возможность самодиагностики оборудования и всех систем, установленных на подстанции, в режиме реального времени. В случае выявления отклонений от нормального режима работы, системой автоматически задействуется резервная схема, а оперативному персоналу выдается соответствующее сообщение.

Система анализирует полученные данные и формирует рекомендации по техническому обслуживанию оборудования, что позволяет изменить принцип работы с регулярных плановых профилактических работ на работу по факту появления неисправностей. Данный принцип работы дает возможность снизить затраты на персонал по содержанию оборудования.

Благодаря протоколу МЭК 61850 со стандартизированным интерфейсом при проектировании подстанции возможно применение оборудования любых производителей, поддерживающих данный протокол. ЦПС имеет возможность легко интегрироваться в систему АСУ ТП верхнего уровня.

Как это работает?

ЦИФРОВАЯ ПОДСТАНЦИЯ МЭК 61850

В цифровой подстанции ЭТЗ Вектор реализовано полное телеуправление всеми коммутационными аппаратами присоединений: выключателем, выкатным элементом, заземлителем. Таким образом, полное управление подстанцией осуществляется удаленно, что существенно повышает безопасность персонала.

Сбор информации со всей подстанции и управление коммутационными аппаратами в режиме реального времени осуществляется при помощи Scada-системы, которая входит в базовую комплектацию всех цифровых подстанций ЭТЗ Вектора.

Предусматривается наличие автоматизированного рабочего места для оперативного персонала на подстанции и\или в диспетчерском пункте. Scada-система позволяет визуализировать сигналы и события, происходящие на подстанции, и предоставляет подробную информацию о сигнале тревоги или событии в графическом отображении.

Дополнительно одной из функцией Scada-системы является трансляция видеоизображения с камер, установленных в отсеках ячеек, что позволяет следить за состоянием коммутационных аппаратов.

Scada –система легко интегрируется с любыми программными системами верхнего уровня, поэтому не составит труда включить подстанцию в единое цифровое пространство энергорайона.

Фото: Пресс-служба Мэра и Правительства Москвы. Денис Гришкин

Подстанция обеспечит электричеством здания инновационного кластера, а также жилые дома, расположенные неподалеку.

На территории центра «Сколково» возле Можайского шоссе построили ПАО «МОЭСК». Она обеспечит энергоснабжением здания инновационного кластера, а также жилые дома и коммерческие организации, расположенные неподалеку.

«В “Сколкове” впервые в России построена инновационная цифровая подстанция. Я считаю, что это революционное событие. Это шаг в будущее электроэнергетики», — отметил . Он напомнил, что в столице насчитывается более 100 тысяч километров электрических сетей, а также работает свыше 20 тысяч подстанций.

«И от того, как будет функционировать эта огромная машина, как будут работать подстанции, как будет работать огромное сетевое хозяйство, во многом зависит стоимость и надежность электроэнергии», — добавил Мэр Москвы.

Цифровая подстанция — лишь элемент этой системы. «Дальше будет идти речь о создании цифровой сети до потребителя. Все это вместе должно дать около 30 процентов снижения текущих расходов. И, конечно, надежность будет в значительной степени повышена. Первая такая ласточка в России появилась в “Сколкове”. Надеюсь, что эта ласточка в скором времени перелетит и на территории других районов. Положит начало системной реконструкции электросетевого хозяйства», — подчеркнул Сергей Собянин.

Управление электроподстанцией ведется в цифровом виде без присутствия персонала, сообщил генеральный директор ПАО «Россети» Павел Ливинский. «Все управляющие воздействия проходят в цифровом формате передачи данных. Вся информация накапливается. Фактически речь уже идет о том, что это элементы искусственного интеллекта управления», — рассказал он.

В стиле хай-тек

Общая трансформаторная мощность электроподстанции — 160 мегаватт. Ее запуск запланирован на 30 июня. Электроподстанцию «Медведевская» должны были построить за 27 месяцев, но завершили гораздо раньше — за 18 месяцев. Таким образом, срок строительства сократился в полтора раза. Подстанция оформлена в стиле хай-тек: она гармонично впишется в будущую застройку «Сколкова».

Генподрядчик — АО «Стройтрансгаз».

Одновременно с возведением подстанции проложили кабельные линии (заходы) 110 киловольт общей протяженностью 7,6 километра.

Сделано в России

На подстанции впервые в новейшей истории установлено современное оборудование российского производства. Так, она оснащена комплектным распределительным устройством с элегазовой изоляцией (КРУЭ) 110 киловольт, рассчитанным на присоединение четырех линий. Это сердце подстанции. КРУЭ обеспечивает прием и распределение электроэнергии в сетях переменного тока. Устройство произведено в Санкт-Петербурге на предприятии «Электроаппарат».

По словам генерального директора ПАО «МОЭСК» Петра Синютина, при строительстве новой подстанции компания учитывала десятки факторов. Среди них сроки ввода новых мощностей, планы развития территорий, специфика выделенного участка земли, особенности расположения коммуникаций и так далее.

«Компоновка подстанции — вопрос технически сложный, и, как правило, для его решения применяется оборудование, хорошо зарекомендовавшее себя на других объектах. В случае с подстанцией “Медведевская” компании было удобнее поставить КРУЭ зарубежной компании, например Siemens. Оно и было изначально запланировано в проекте. Однако понимая все риски, компания “МОЭСК” взяла на себя ответственность впервые в истории современной России заказать и установить КРУЭ 110 киловольт российского производства. Разумеется, такое решение потребовало серьезной технической проработки и новых инженерных решений, однако в противном случае у отечественного предприятия не было бы шансов создать реальный российский продукт», — рассказал Петр Синютин.

В результате петербургский завод «Электроаппарат» получил реальный опыт производства и внедрения комплектного распределительного устройства с элегазовой изоляцией.

Петр Синютин добавил, что для энергетиков появление отечественного КРУЭ дает возможность полностью укомплектовывать подстанции российским оборудованием. Это снижает риски роста цен из-за курсовой разницы и нехватки запасных частей.

По качеству и надежности, а также срокам монтажа российское распределительное устройство не уступает мировым аналогам. К тому же отечественное оборудование имеет преимущество — его стоимость ниже на 30 процентов.

Понимая риски заказчика, производитель взял повышенные гарантийные обязательства на 15 лет. В течение этого периода специалисты предприятия должны будут приезжать на подстанцию для устранения любых неполадок на оборудовании в течение 24 часов. Завод увеличивает число поставляемых на подстанцию запасных частей, инструментов, приспособлений, а также организует склад всех компонентов КРУЭ.

Единая цифровая среда

Подстанция оборудована двумя масляными силовыми трансформаторами мощностью по 80 мегаватт каждый. Устройство регулирования под нагрузкой, которым они оснащена, позволяет регулировать напряжение в сети, не выключая трансформатор. Производитель — ООО «Тольяттинский трансформатор».

Кроме того, на подстанции установлены четырехсекционные распределительные устройства 20 киловольт на 20 линейных ячеек (производитель — ОАО «Самарский трансформатор»), система релейной защиты и автоматизированная система управления (производитель — ООО «НПП “Экра”»), а также энергоффективное светодиодное освещение.

Концепция подстанции предполагает отказ от устаревших аналоговых систем и создание единой цифровой среды управления и защиты. Диагностика (онлайн-мониторинг силовых трансформаторов и КРУЭ), измерения, анализ и управление питающим центром проводятся в цифровом коде без присутствия персонала.

В будущем цифровая подстанция станет ключевым компонентом интеллектуальной сети (Smart Grid).

Электросетевое хозяйство Москвы

Электросетевое хозяйство Москвы включает 103,1 тысячи километров электрических сетей, 158 питающих центров высокого напряжения (их мощность превышает 32,9 тысячи мегаватт), а также свыше 23 тысяч трансформаторных подстанций среднего напряжения.

Резерв мощности в сети составляет около 17 процентов.

Основное направление развития электрохозяйства — создание сети с напряжением 20 киловольт. Это увеличит пропускную способность распределительных сетей как минимум в два — два с половиной раза и обеспечит присоединение новых потребителей. При этом не будет дефицита мощности.

Ежегодно в городе запускаются одна-две новые высоковольтные подстанции и около 400 трансформаторных подстанций среднего напряжения.

Всего за 2012-2017 годы ввели 12 259 мегаватт трансформаторной мощности, реконструировали более 2,2 километра и построили около 7,5 тысячи километров кабельных линий.

В 2018 году запланирован ввод 1305 мегаватт трансформаторной мощности, а также строительство более 1,6 тысячи километров сетей и реконструкция 261 километра.

Уровень износа электрических сетей по сравнению с 2010 годом снизился с 65,2 процента до 56,3 процента.

Рассматриваются вопросы реализации совместного проекта ЗАО «ГК «Электрощит»-ТМ Самара» и ЗАО «Инженерный центр «Энергосервис» по созданию цифровых ячеек на базе КРУ СЭЩ‑70. Циф ровая подстанция .

ЗАО «Инженерный центр «Энергосервис», г. Архангельск,

ЗАО «ГК «Электрощит»-ТМ Самара», г. Самара

Основные преимущества цифровой подстанции связаны с повышением уровня ее автоматизации за счет применения более скоростных коммуникаций на основе промышленного Ethernet с поддержкой технологий резервирования и безопасности, использования единых протоколов обмена при интеграции с АСУ ТП подстанции различных интеллектуальных электронных устройств (ИЭУ), возможности реализации так называемых горизонтальных связей между ИЭУ для обмена дискретной (МЭК 61850-8-1, GOOSE-сообщения) и аналоговой информацией (МЭК 61850-90-5) . Организация горизонтальных связей между интеллектуальными электронными устройствами позволяет построить надежную систему оперативных блокировок на подстанции, обеспечить реализацию более эффективных алгоритмов устройств защиты и автоматики, систем регулирования напряжения на подстанции и т. д.

Другое важнейшее преимущество цифровой подстанции связано с существенным сокращением количества медных проводов во вторичных и оперативных цепях или их отсутствием при полной реализации стандартов цифровой подстанции. Переход на цифровые технологии связи на подстанциях позволит осуществить полноценный мониторинг и диагностику работы как отдельных интеллектуальных электронных устройств, промышленных сетей, высоковольтных ячеек, так и подстанции в целом.

На подстанциях используются распределительные устройства (РУ) разных уровней напряжений. Наибольшее количество присоединений чаще всего приходится на РУ 6–20 кВ. Поэтому актуальной задачей является внедрение эффективных и доступных по стоимости решений на основе стандартов МЭК 61850 для распределительных устройств 6–20 кВ.

Главное отличие решений для РУ 6–20 кВ от решений для открытых РУ 110 кВ и выше связано с тем, что основные компоненты цифровой подстанции находятся внутри высоковольтных ячеек 6–20 кВ, что позволяет упростить реализацию резервирования промышленных сетей, требований по обеспечению ЭМС, вводу/выводу аналоговой и дискретной информации. Основным компонентом РУ 6–20 кВ нового поколения является цифровая ячейка.

Наиболее важная задача совместного проекта ЗАО «Инженерный центр «Энергосервис» и ЗАО «ГК «Электрощит»-ТМ Самара» связана с разработкой цифровой ячейки на базе комплектного распределительного устройства (КРУ) СЭЩ‑70 (рис. 1), сопоставимой по стоимости с СЭЩ‑70 при использовании традиционных микропроцессорных устройств и промышленных сетей на основе RS‑485. При этом подстанции, оснащенные цифровыми ячейками СЭЩ‑70, должны иметь более высокий уровень надежности, обладать возможностью тестирования ячеек сразу после их сборки, обеспечивать возможность мониторинга и диагностики как отдельных компонентов ячеек, так и ячейки, и подстанции в целом.


Рис. 1. Комплектное распределительное устройство СЭЩ-70

В процессе реализации совместного проекта прорабатывается 4 основных варианта цифровой ячейки на базе КРУ СЭЩ‑70.

Вариант 1

Первый из рассматриваемых вариантов имеет максимальную степень готовности к серийному производству. Его структурная схема приведена на рис. 2.


Рис. 2. Структурная схема 1‑го варианта цифровой ячейки

Центральным компонентом цифровой ячейки является многофункциональный измерительный преобразователь ЭНИП‑2, который обеспечивает измерение параметров режима энергосистем на основе среднеквадратических значений, а также на основе токов и напряжений главной гармоники, выполнение функций телесигнализации и телеуправления, технического учета электроэнергии, замещения щитовых приборов при использовании модулей индикации, технического учета электроэнергии, мониторинга качества электроэнергии.

Устройства ЭНИП‑2 содержат один или два порта Ethernet (витая пара 2 × 100BASE-TX или оптика 2 × 100BASE-FX MM LC) с поддержкой МЭК 61850-8-1. Возможна как независимая работа портов, так и работа через встроенный сетевой коммутатор. В ЭНИП‑2 встроен сервер MMS-сообщений, публикатор и подписчик GOOSE-сообщений для реализации оперативных блокировок и управления.

С целью расширения функциональных возможностей ЭНИП‑2 дополняются модулями дискретного ввода/вывода, блоками телеуправления со встроенными реле, модулями кабельных сетей 6–35 кВ, модулями ввода/вывода с различных датчиков по шине 1‑Wire (температурные датчики, датчики влажности, датчики охранных систем и т. д.), модулями индикации на основе светодиодных индикаторов, черно-белых и цветных сенсорных ЖКИ .

Для замещения щитовых приборов и индикаторов состояния ячейки предлагается два основных конструктивных решения (рис. 3): раздельное размещение ЭНИП‑2 и одного или нескольких модулей индикации и совмещение ЭНИП‑2 и модуля индикации в единое устройство с установкой на место щитового прибора.



Рис. 3. ЭНИП‑2 и модуль индикации

При большом многообразии функций стоимость ЭНИП‑2 вместе с модулем индикации сопоставима со стоимостью многофункционального измерительного преобразователя телемеханики или многофункционального щитового прибора. В случае технического учета электроэнергии ЭНИП‑2 замещает счетчик электрической энергии. Таким образом, применение ЭНИП‑2 имеет и экономический эффект. В этом случае достигается редкое сочетание инноваций и финансовой выгоды.

Подключение УРЗА и счетчика электроэнергии к шине подстанции (рис. 2) производится через специальное устройство сопряжения – шлюз, так как в настоящее время отсутствуют приемлемые по стоимости устройства РЗА и счетчики с поддержкой МЭК 61850-8-1. Использование шлюза следует рассматривать как временное решение. В ближайшем будущем ожидается появление доступных по стоимости УРЗА и счетчиков с поддержкой шины подстанции. Так, специалистами ЗАО «Инженерный центр «Энергосервис» завершается разработка многофункционального измерительного устройства ESM, которое в отличие от ЭНИП‑2 выполняет функции счетчика коммерческого учета электроэнергии.

Выбор оборудования для локальной сети осуществляется заказчиком на этапе заказа цифровых ячеек. Наиболее рациональное решение для реализации шины подстанции связано с применением сетевых устройств, выполняющих функции специального коммуникационного адаптера для сетей с резервированием RedBox (Redundancy Box) и коммутатора. Указанные сетевые устройства обеспечивают поддержку протокола бесшовного сетевого резервирования HSR согласно МЭК 62439-3 для промышленных сетей Ethernet с кольцевой топологией или протокола резервирования PRP для промышленных сетей с произвольной топологией. Применение коммутаторов, совмещенных с RedBox, позволяет упростить реализацию интеллектуальных электронных устройств. В этом случае в используемых ИЭУ достаточно наличия одного сетевого интерфейса. Начало массового производства указанных коммутаторов с реализацией протоколов резервирования HSR и PRP на программируемых логических интегральных микро­схемах (FPGA, Field-Programmable Gate Array) фирмами Moxa и Kyland запланировано на первую половину 2014 года.

В высоковольтных ячейках применяется множественное дублирование ввода/вывода дискретных сигналов, используется большое количество медных проводов, что приводит к снижению надежности. Для устройств РЗА, телемеханики, устройств индикации состояния ячейки, организации оперативных блокировок часто применяются отдельные концевые выключатели, блок-контакты выключателей и т. д.

В предлагаемом на рис. 2 варианте используется только двукратное дублирование ввода/вывода дискретных сигналов.

Вариант 2

Второй вариант цифровой ячейки (рис. 4) подразумевает отказ от дублирования ввода дискретных сигналов для выполнения функций релейной защиты и автоматики, телемеханики, оперативных блокировок и т. д. Это позволит значительно сократить количество контрольных проводов и обеспечит повышение надежности.


Рис. 4. Структурная схема 2‑го варианта цифровой ячейки (цифровая подстанция)

Структурная схема на рис. 4 построена для случая, когда требуется технический учет электроэнергии. При необходимости провести коммерческий учет электроэнергии планируется вместо ЭНИП‑2 использовать многофункциональное измерительное устройство ESM.

Принципиальное отличие от первого варианта связано с изменением способов ввода/вывода дискретных сигналов. В СЭЩ-70 имеется уникальная возможность полной замены концевых выключателей, блок-контактов на бесконтактные датчики и переходом на взаимодействия с блоком управления вакуумным выключателем с электромагнитной защелкой по цифровым интерфейсам.

Данный вариант предусматривает использование распределенной системы дискретного ввода/вывода, основанной на применении специальных модулей дискретного ввода/вывода ЭНМВ‑4‑ХХ. Можно рассматривать данную подсистему как простейший вариант шины процесса для дискретного ввода/вывода в цифровой ячейке.

Семейство модулей ЭНМВ‑4‑ХХ разрабатывается специально для дискретного ввода/вывода в ячейках СЭЩ‑70. В состав семейства входят следующие устройства: модуль ввода информации с бесконтактных датчиков положения, модуль ввода информации с «сухих» контактов, модуль ввода/вывода с актуаторов, модуль взаимодействия с блоком управления вакуумным выключателем с магнитной защелкой.

Использование в распределительных устройствах бесконтактных датчиков положения вместо концевых выключателей и блок-контактов имеет неоспоримые преимущества. Во‑первых, исчезают проблемы, связанные с «дребезгом» контактов, необходимостью пробоя оксидной пленки, большим количеством контрольных проводов. Во‑вторых, уменьшается потребление оперативного тока, повышается надежность, появляется возможность обеспечить диагностику подсистемы ввода/вывода дискретной информации.

Ввод информации с бесконтактных датчиков в модуле ЭНМВ‑4‑БК производится с использованием многоканального аналого-цифрового преобразователя (АЦП). Это позволяет контролировать остаточное напряжение датчика и по его значению диагностировать неисправность, а также обеспечивает гибкость при работе с различными моделями датчиков. В комплектных распределительных устройствах СЭЩ‑70 используются бесконтактные датчики серии E2A фирмы Omron для контроля положения элементов КРУ, в том числе положения выдвижного элемента, выключателя, заземляющих разъединителей, дверцы отсека, клапанов ЗДЗ и т. д.

Применение модулей ЭНМВ‑4‑БК совместно с датчиками серии E2A позволяет значительно сократить количество контрольных кабелей в высоковольтной ячейке, повысить надежность КРУ, а также организовать эффективную систему блокировок.

Модули дискретного ввода/вывода максимально приближены к датчикам дискретных сигналов. Подключение модулей к головному устройству сопряжения с шиной процесса УСШ-Д производится с помощью промышленной сети CAN.

Предлагаемая система дискретного ввода/вывода, основанная на использовании промышленной сети CAN, обладает возможностью диагностики как самой сети, так и отдельных датчиков и блоков управления вакуумными выключателями. Для реализации оперативных блокировок в разрабатываемом устройстве сопряжения УСШ-Д предусматривается программируемая логика.

Идеальным вариантом подключения устройств РЗА к УСШ-Д является подключение по цифровому интерфейсу, что требует модернизации устройств РЗА. Промежуточный вариант связан с применением дополнительного модуля ЭНМВ‑4‑МС, управляемого от УСШ-Д, который преобразует цифровой код в дискретные сигналы для УРЗА.

Вариант 3

Третий вариант – полноценная реализация цифровой ячейки (рис. 5).



Рис. 5. Структурная схема 3‑го варианта цифровой ячейки

В качестве базовых компонентов цифровой ячейки в третьем варианте используются устройства сопряжения с шиной процесса УСШ-Т, УСШ-Н, УСШ‑Д. Все они разрабатываются на основе аналогового устройства сопряжения с шиной процесса ENMU и дискретного устройства сопряжения с шиной процесса ENCB . Разработка устройств сопряжения с шиной процесса ведется специалистами ЗАО «Инженерный центр «Энергосервис» с 2011 года. Устройства имеют модульную структуру. Основные модули: модуль тока для подключения к измерительной и релейной обмоткам трансформатора тока, модуль напряжения, процессорный модуль, модуль дискретного ввода/вывода, модуль питания. Каждый имеет несколько модификаций.

Необходимость в разработке различных модификаций модулей тока и модулей напряжения связана как с реализацией устройств сопряжения (MU, Merging Unit), например при использовании оптических датчиков тока или датчиков тока с применением тора Роговского, емкостных или резистивных датчиков напряжения, так и с реализацией специальной разновидности устройств сопряжения – SAMU (Stand-Alone Merging Unit), подключаемых к традиционным транс­форматорам тока и напряжения.

Если ENMU используется в качестве SAMU, то при его конфигурировании задаются следующие возможные режимы работы: формирование раздельных или совмещенного потоков данных от релейной и измерительной обмоток трансформатора тока для выборок тока (sampled values) и для векторных измерений. В последних модификациях ENMU обеспечена одновременная передача трех потоков sampled values (sv256, sv80M, sv80P), реализован протокол резервирования PRP (IEC 62439-3).

Устройства сопряжения с шиной процесса ENMU были разработаны не только для применения их в распределительных устройствах 110 кВ и выше. Габаритные размеры и вес устройств ENMU позволяют устанавливать их в релейные отсеки высоковольтных ячеек 6–20 кВ. Для цифровых ячеек СЭЩ‑70 на основе готовых модулей разрабатываются специализированные аналоговые и дискретные устройства сопряжения с шиной процесса.

Следует отметить, что в цифровой ячейке возможно применение как совмещенного аналогового устройства сопряжения с шиной процесса (УСШ), так и токового устройства сопряжения с шиной процесса (УСШ-Т), а также устройства сопряжения напряжения с шиной процесса (УСШ-Н).

В третьем варианте предусмотрена внутренняя шина процесса по топологии «точка-точка» и внешняя шина процесса, данные для которой формируются контроллером присоединения путем консолидации потоков данных от УСШ-Т, УСШ-Н и устройства сопряжения шины процесса с дискретными датчиками УСШ-Д. Консолидация данных может производиться путем совмещения выборочных значений тока и напряжения либо с помощью совмещения выборочных значений (sampled values) тока и напряжения с GOOSE-сообщениями.

В случае необходимости расширения функциональных возможностей по локальной защите и автоматике дополнительное устройство РЗА может быть подключено также по схеме «точка-точка». Для реализации других устройств РЗА (централизованных устройств РЗА, дифференциальной защиты линий, шин, централизованных устройств режимной и противоаварийной автоматики) необходимо подключить контроллер присоединения к шине процесса РУ 6–20 КВ посредством коммутатора. Один из возможных вариантов – применение сетевых устройств, выполняющих функции специального коммуникационного адаптера для сетей с резервированием RedBox (Redundancy Box) и коммутатора с поддержкой протоколов резервирования HSR или PRP. Указанные сетевые устройства упоминались при описании первого варианта цифровой ячейки.

В рассматриваемом варианте предполагается использовать многофункциональное устройство ESM (рис. 6), которое в отличие от ЭНИП‑2 дополнительно выполняет функции счетчика коммерческого учета электроэнергии, прибора измерения показателей качества электроэнергии и устройства синхронизированных векторных измерений. Специалистами ЗАО «Инженерный центр «Энергосервис» разрабатываются две основные модификации ESM: с аналоговыми входами и цифровыми входами согласно МЭК 61850-9-2.

Сегодня идет много разговоров про технологию “Цифровая подстанция”. Когда-то это тема в России развивалась под эгидой ФСК ЕЭС для больших подстанций на сверхвысокие классы напряжения (220 кВ и выше), но сейчас ее можно найти и на более скромных объектах. Более того, самыми передовыми, в части применения цифровых технологий, являются несколько опытных подстанций 110 кВ, такие как ПС “Олимпийская” в Тюменьэнерго. Отчасти это связано с попыткой снизить затраты на опытные полигоны, отчасти попыткой снизить ущерб от возможной неправильной работы нового оборудования в реальной энергосистеме.

Вместе с тем не всегда понятно какую именно подстанцию можно считать полностью цифровой? Само внедрение цифровых технологий в энергетике началось более 20 лет назад с приходом первых микропроцессорных блоков РЗА, которые имели возможность интеграции в системы АСУ по цифровым каналам связи.

Но сегодня под цифровой подстанцией обычно понимается несколько другой объект.

С выходом в этом году измененных Норм технологического проектирования ПС 35-750 кВ ФСК (от 25.08.2017) можно разобраться с этим вопросом более подробно. Думаю, статья будет полезна не только интересующимся коммуникационными технологиями, но и простым релейщикам, многим из которых придется столкнуться с подобными объектами в будущем.

Начнем с определений НТП ФСК 2017 (здесь и дальше вырезки из документа с пояснениями)

Как мы видим, согласно позиции ФСК, цифровыми являются только те подстанции, где применено оборудование, поддерживающее стандарты МЭК-61850.

Стоит отметить, что стандарты МЭК-61850 изначально разрабатывались для работы внутри отдельно взятой подстанции, поэтому выдача информации на диспетчерский пункт производится другими протоколами (обычно МЭК-60870-5-104), что по всей видимости не противоречит термину “цифровая подстанция”

Самое важное на мой взгляд определение потому, что оно содержит требование применения оптических ТТ и электронных ТН, как самых передовых технологий из набора МЭК-61850 (SV). Получается, если подстанция не содержит этих элементов, то она не может считаться цифровой. Таким образом, в России пока нет ни одной цифровой подстанции потому, как ко всем существующим ОТТ и ЭТН подключена релейная защита, работающая только на сигнал (например, цифровой полигон Русгидро на Нижегородской ГЭС).

Таким образом, Цифровая подстанция – технология будущего.

Туда же. Все устройства должны поддерживать обмен по стандартам МЭК-61850-8-1 (MMS, GOOSE). Технология MMS предназначена для обмена с устройствами верхнего уровня (до сервера АСУ конкретной подстанции), а GOOSE – для горизонтального обмена между терминалами РЗА и контроллерами присоединений. Таким образом, дискретных входы и реле микропроцессорных устройств должны остаться в прошлом. Хорошая новость для тех, кто устал протягивать клеммы

А вот это очень интересная новость для проектировщиков – теперь не только строить, но и проектировать цифровые подстанции нужно согласно стандартам МЭК-61850.

По-сути, это означает, что вы должны проектировать не на бумаге или в Автокаде, с последующим переносом на бумагу, а сразу в цифровом виде. Т.е. на выходе у проектировщика должно получаться готовое задание на наладку РЗА и АСУ в цифровом виде (файл в формат языка описания SCL). Это позволит существенно сократить время на наладку, но возможно увеличит время на проектирование. Для того, чтобы время на разработку проекта не увеличилось нужно создать типовые проекты на каждое присоединение подстанции. Этим сейчас и занимается ФСК ЕЭС в рамках разработки национального профиля МЭК-61850.

Еще один момент – теперь для того, чтобы обеспечить работоспособность системы РЗА, нужно рассчитывать параметры локально-вычислительной сети (ЛВС). Т.е. РЗА избавиться от дискретных цепей, но будет зависеть от коммуникационной сети подстанции.

Все функции РЗА и АСУ на подстанции будут жестко стандартизированы и реализованы на совокупности логических узлов (logical node). Прочите еще раз абзац выше – думаю, в энергетике скоро начнет расти спрос на программистов и спецов по информационным технологиям) Как у вас дела с английским языком и абстрактным мышлением?

Теперь нужно будет внимательно следить за информационной безопасностью подстанции. Стандартизация имеет обратную сторону потому, как вирусы и другое вредоносное ПО пишется под наиболее популярные операционные системы.

“Устаревшие” протоколы передачи данных применять будет можно, но только при серьезном обосновании.

Какие можно сделать выводы из данного документа?

Пожалуй, я в этот раз не буду делать никаких выводов потому, что не являюсь экспертом в этих технологиях.

А что думаете вы? Пойдет Цифровая подстанция “в массы”?

Новые технологии производства современных систем управления перешли из стадии научных исследований и экспериментов в стадию практического использования. Разработаны и внедряются современные коммуникационные стандарты обмена информацией. Широко применяются цифровые устройства защиты и автоматики. Произошло существенное развитие аппаратных и программных средств систем управления. Появление новых международных стандартов и развитие современных информационных технологий открывает возможности инновационных подходов к решению задач автоматизации и управления энергообъектами, позволяя создать подстанцию нового типа - цифровую подстанцию (ЦПС). Отличительными характеристиками ЦПС являются: наличие встроенных в первичное оборудование интеллектуальных микропроцессорных устройств, применение локальных вычислительных сетей для коммуникаций, цифровой способ доступа к информации, её передаче и обработке, автоматизация работы подстанции и процессов управления ею. В перспективе цифровая подстанция будет являться ключевым компонентом интеллектуальной сети (Smart Grid).

Термин «Цифровая подстанция» до сих пор трактуется по-разному разными специалистами в области систем автоматизации и управления. Для того чтобы разобраться, какие технологии и стандарты относятся к цифровой подстанции, проследим историю развития систем АСУ ТП и РЗА. Внедрение систем автоматизации началось с появления систем телемеханики. Устройства телемеханики позволяли собирать аналоговые и дискретные сигналы с использованием модулей УСО и измерительных преобразователей. На базе систем телемеханики развивались первые АСУ ТП электрических подстанций и электростанций. АСУ ТП позволяли не только собирать информацию, но и производить её обработку, а также представлять информацию в удобном для пользователя интерфейсе. С появлением первых микропроцессорных релейных защит информация от этих устройства также стала интегрироваться в системы АСУ ТП. Постепенно количество устройств с цифровыми интерфейсами увеличивалось (противоаварийная автоматика, системы мониторинга силового оборудования, системы мониторинга щита постоянного тока и собственных нужд и т.д.). Вся эта информация от устройств нижнего уровня интегрировалась в АСУ ТП по цифровым интерфейсам. Несмотря на повсеместное использование цифровых технологий для построения систем автоматизации, такие подстанции не являются в полной мере цифровыми, так как вся исходная информация, включая состояния блок-контактов, напряжения и токи, передаётся в виде аналоговых сигналов от распределительного устройства в оперативный пункт управления, где оцифровывается отдельно каждым устройством нижнего уровня. Например, одно и то же напряжение параллельно подаётся на все устройства нижнего уровня, которые преобразовывают его в цифровой вид и передают в АСУ ТП. На традиционных подстанциях различные подсистемы используют различные коммуникационные стандарты (протоколы) и информационные модели. Для функций защиты, измерения, учёта, контроля качества выполняются индивидуальные системы измерений и информационного взаимодействия, что значительно увеличивает как сложность реализации системы автоматизации на подстанции, так и её стоимость.

Переход к качественно новым системам автоматизации и управления возможен при использовании стандартов и технологий цифровой подстанции, к которым относятся:

1. стандарт МЭК 61850:
модель данных устройств;
унифицированное описание подстанции;
протоколы вертикального (MMS) и горизонтального (GOOSE) обмена;
протоколы передачи мгновенных значений токов и напряжений (SV);

2. цифровые (оптические и электронные) трансформаторы тока и напряжения;
3. аналоговые мультиплексоры (Merging Units);
4. выносные модули УСО (Micro RTU);
5. интеллектуальные электронные устройства (IED).

Основной особенностью и отличием стандарта МЭК 61850 от других стандартов является то, что в нём регламентируются не только вопросы передачи информации между отдельными устройствами, но и вопросы формализации описания схем - подстанции, защиты, автоматики и измерений, конфигурации устройств. В стандарте предусматриваются возможности использования новых цифровых измерительных устройств вместо традиционных аналоговых измерителей (трансформаторов тока и напряжения). Информационные технологии позволяют перейти к автоматизированному проектированию цифровых подстанций, управляемых цифровыми интегрированными системами. Все информационные связи на таких подстанциях выполняются цифровыми, образующими единую шину процесса. Это открывает возможности быстрого прямого обмена информацией между устройствами, что в конечном счёте даёт возможность сокращения числа медных кабельных связей, и числа устройств, а также более компактного их расположения.
СТРУКТУРА ЦИФРОВОЙ ПОДСТАНЦИИ

Рассмотрим подробнее структуру цифровой подстанции, выполненную в соответствии со стандартом МЭК 61850 (рис.). Система автоматизации энергообъекта, построенного по технологии «Цифровая подстанция», делится на три уровня:
полевой уровень (уровень процесса);
уровень присоединения;
станционный уровень.

Полевой уровень состоит из:
первичных датчиков для сбора дискретной информации и передачи команд управления на коммутационные аппараты (micro RTU);
первичных датчиков для сбора аналоговой информации (цифровые трансформаторы тока и напряжения).

Уровень присоединения состоит из интеллектуальных электронных устройств:
устройств управления и мониторинга (контроллеры присоединения, многофункциональные измерительные приборы, счётчики АСКУЭ, системы мониторинга трансформаторного оборудования и т.д.);
терминалов релейной защиты и локальной противоаварийной автоматики.

Станционный уровень состоит из:
серверов верхнего уровня (сервер базы данных, сервер SCADA, сервер телемеханики, сервер сбора и передачи технологической информации и т.д., концентратор данных);
АРМ персонала подстанции.

Из основных особенностей построения системы в первую очередь необходимо выделить новый «полевой» уровень, который включает в себя инновационные устройства первичного сбора информации: выносные УСО, цифровые измерительные трансформаторы, встроенные микропроцессорные системы диагностики силового оборудования и т.д.

Цифровые измерительные трансформаторы передают мгновенные значения напряжения и токов по протоколу МЭК 61850-9-2 устройствам уровня присоединения. Существует два вида цифровых измерительных трансформаторов: оптические и электронные. Оптические измерительные трансформаторы являются наиболее предпочтительными при создании систем управления и автоматизации цифровой подстанции, так как используют инновационный принцип измерений, исключающий влияние электромагнитных помех. Электронные измерительные трансформаторы базируются на базе традиционных трансформаторов и используют специализированные аналогово-цифровые преобразователи.

Данные от цифровых измерительных трансформаторов, как оптических, так и электронных, преобразуются в широковещательные Ethernet-пакеты с использованием мультиплексоров (Merging Units), предусмотренных стандартом МЭК 61850-9. Сформированные мультиплексорами пакеты передаются по сети Ethernet (шине процесса) в устройства уровня присоединения (контроллеры АСУ ТП, РЗА, ПА и др.) Частота дискретизации передаваемы данных не хуже 80 точек на период для устройств РЗА и ПА и 256 точек на период для АСУ ТП, АИИС КУЭ и др.

Данные о положении коммутационных аппаратов и другая дискретная информация (положение ключей режима управления, состояние цепей обогрева приводов и др.) собираются с использованием выносных модулей УСО, установленных в непосредственной близости от коммутационных аппаратов. Выносные модули УСО имеют релейные выходы для управления коммутационными аппаратами и синхронизируются с точностью не ниже 1 мс. Передача данных от выносных модулей УСО осуществляется по оптоволоконной связи, являющейся частью шины процесса по протоколу МЭК 61850-8-1 (GOOSE). Передача команд управления на коммутационные аппараты также осуществляется через выносные модули УСО с использованием протокола МЭК 61850-8-1 (GOOSE).

Силовое оборудование оснащается набором цифровых датчиков. Существуют специализированные системы для мониторинга трансформаторного и элегазового оборудования, которые имеют цифровой интерфейс для интеграции в АСУ ТП без использования дискретных входов и датчиков 4-20 мА. Современные КРУЭ оснащаются встраиваемыми цифровыми трансформаторами тока и напряжения, а шкафы управления в КРУЭ позволяют устанавливать выносные УСО для сбора дискретных сигналов. Установка цифровых датчиков в КРУЭ производится на заводе-изготовителе, что позволяет упростить процесс проектирования, а также монтажные и наладочные работы на объекте.

Другим отличием является объединение среднего (концентраторов данных) и верхнего (сервера и АРМ) уровня в один станционный уровень. Это связано с единством протоколов передачи данных (стандарт МЭК 61850-8-1), при котором средний уровень, ранее выполнявший работу по преобразованию информации из различных форматов в единый формат для интегрированной АСУ ТП, постепенно теряет своё назначение. Уровень присоединения включает в себя интеллектуальные электронные устройства, которые получают информацию от устройств полевого уровня, выполняют логическую обработку информации, передают управляющие воздействия через устройства полевого уровня на первичное оборудование, а также осуществляют передачу информации на станционный уровень. К этим устройствам относятся контроллеры присоединения, терминалы МПРЗА и другие многофункциональные микропроцессорные устройства.

Следующим отличием в структуре является её гибкость. Устройства для цифровой подстанции могут быть выполнены по модульному принципу и позволяют совмещать в себе функции множества устройств. Гибкость построения цифровых подстанций позволяет предложить различные решения с учётом особенностей энергообъекта. В случае модернизации существующей подстанции без замены силового оборудования для сбора и оцифровки первичной информации можно устанавливать шкафы выносных УСО. При этом выносные УСО помимо плат дискретного ввода/вывода будут содержать платы прямого аналогового ввода (1/5 А), которые позволяют собрать, оцифровать и выдать в протоколе МЭК 61850-9-2 данные от традиционных трансформаторов тока и напряжения. В дальнейшем полная или частичная замена первичного оборудования, в том числе замена электромагнитных трансформаторов на оптические, не приведёт к изменению уровней присоединения и подстанционного. В случае использования КРУЭ имеется возможность совмещения функций выносного УСО, Merging Unit и контроллера присоединения. Такое устройство устанавливается в шкаф управления КРУЭ и позволяет оцифровать всю исходную информацию (аналоговую или дискретную), а также выполнить функции контроллера присоединения и функции резервного местного управления.

С появлением стандарта МЭК 61850 ряд производителей выпустили продукты для цифровой подстанции. В настоящее время во всём мире выполнено уже достаточно много проектов, связанных с применением стандарта МЭК 61850, показавших преимущества данной технологии. К сожалению, уже сейчас, анализируя современные решения для цифровой подстанции, можно заметить достаточно свободную трактовку требований стандарта, что может привести в будущем к несогласованности и проблемам в интеграции уже современных решений в области автоматизации.

Сегодня в России активно ведётся работа по развитию технологии «Цифровая подстанция». Запущен ряд пилотных проектов, ведущие российские фирмы приступили к разработке отечественных продуктов и решений для цифровой подстанции. На наш взгляд, при создании новых технологий, ориентированных на цифровую подстанцию, необходимо строго следовать стандарту МЭК 61850, не только в части протоколов передачи данных, но и в идеологии построения системы. Соответствие требованиям стандарта позволит в будущем упростить модернизацию и обслуживание объектов на базе новых технологий.

В 2011 году ведущими российскими компаниями (ООО НПП «ЭКРА», ООО «ЭнергопромАвтоматизация», ЗАО «Профотек» и ОАО «НИИПТ») было подписало генеральное соглашение об организации стратегического сотрудничества с целью объединения научно-технических, инженерных и коммерческих усилий для создания цифровой подстанции на территории РФ.

В соответствии с МЭК 61850, разработанная система состоит из трёх уровней. Шина процесса представлена оптическими трансформаторами (ЗАО «Профотек») и выносным УСО (microRTU) NPT Expert (ООО «ЭнергопромАвтоматизация»). Уровень присоединения - микропроцессорные защиты ООО НПП «ЭКРА» и контроллер присоединения NPT BAY-9-2 ООО «ЭнергопромАвтоматизация». Оба устройства принимают аналоговую информацию по МЭК 61850-9-2 и дискретную информацию по МЭК 61850-8-1(GOOSE). Станционный уровень реализован на базе SCADA NPT Expert с поддержкой МЭК 61850-8-1(MMS).

В рамках совместного проекта была разработана также система автоматизированного проектирования ЦПС - SCADA Studio, проработана структура сети Ethernet для различных вариантов построения, собран макет цифровой подстанции и проведены совместные испытания, в том числе на испытательном стенде в ОАО «НИИПТ».

Действующий прототип цифровой подстанции был представлен на выставке «Электрические сети России-2011». Внедрение пилотного проекта и выход на полномасштабное производство оборудования цифровой подстанции запланирован на 2012 год. Российское оборудование для «Цифровой подстанции» прошло полномасштабное тестирование, подтверждена также его совместимость по стандарту МЭК 61850 с оборудованием различных зарубежных (Omicron, SEL, GE, Siemens и др.) и отечественных (ООО «Прософт-Системы», НПП «Динамика» и др.) компаний.

Разработка собственного российского решения по цифровой подстанции позволит не только развивать отечественное производство и науку, но и повысить энергобезопасность нашей страны. Проведённые исследования технико-экономических показателей позволяют сделать вывод, что стоимость нового решения при переходе на серийный выпуск продукции не будет превышать стоимости традиционных решений построения систем автоматизации и позволит получить ряд технических преимуществ, таких как:
значительное сокращение кабельных связей;
повышение точности измерений;
простота проектирования, эксплуатации и обслуживания;
унифицированная платформа обмена данными (МЭК 61850);
высокая помехозащищённость;
высокая пожаро-взрывобезопасность и экологичность;
снижение количества модулей ввода/вывода на устройства АСУ ТП и РЗА, обеспечивающее снижение стоимости устройств.

Ещё ряд вопросов требует дополнительных проверок и решений. Это относится к надёжности цифровых систем, к вопросам конфигурирования устройств на уровне подстанции и энергообъединения, к созданию общедоступных инструментальных средств проектирования, ориентированных на разных производителей микропроцессорного и основного оборудования. Для обеспечения требуемого уровня надёжности в рамках пилотных проектов должны быть решены следующие задачи.

1. Определение оптимальной структуры цифровой подстанции в целом и её отдельных систем.
2. Гармонизация международных стандартов и разработка отечественной нормативной документации.
3. Метрологическая аттестация систем автоматизации, в том числе и системы АИИСКУЭ, с поддержкой МЭК 61850-9-2.
4. Накопление статистики по надёжности оборудования цифровой подстанции.
5. Накопление опыта внедрения и эксплуатации, обучение персонала, создание центров компетенции.

В настоящее время в мире началось массовое внедрение решений класса «цифровая подстанция», основанных на стандартах серии МЭК 61850, реализуются технологии управления Smart Grid, вводятся в эксплуатацию приложения автоматизированных систем технологического управления. Применение технологии «Цифровой подстанции» должно позволить в будущем существенно сократить расходы на проектирование, пуско-наладку, эксплуатацию и обслуживание энергетических объектов.

Алексей Данилин, директор по АСДУ ОАО «СО ЕЭС»,Татьяна Горелик, заведующая отделом АСУ ТП, к.т.н., Олег Кириенко, инженер, ОАО «НИИПТ» Николай Дони, заведующий отделом перспективных разработок НПП «ЭКРА»

Рассказать друзьям